Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation with Nvidia CUDA Compatible Devices

نویسندگان

  • Tomonari Masada
  • Tsuyoshi Hamada
  • Yuichiro Shibata
  • Kiyoshi Oguri
چکیده

In this paper, we propose an acceleration of collapsed variational Bayesian (CVB) inference for latent Dirichlet allocation (LDA) by using Nvidia CUDA compatible devices. While LDA is an efficient Bayesian multi-topic document model, it requires complicated computations for parameter estimation in comparison with other simpler document models, e.g. probabilistic latent semantic indexing, etc. Therefore, we accelerate CVB inference, an efficient deterministic inference method for LDA, with Nvidia CUDA. In the evaluation experiments, we used a set of 50,000 documents and a set of 10,000 images. We could obtain inference results comparable to sequential CVB inference.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation for the Latent Dirichlet Allocation

We review three algorithms for parameter estimation of the Latent Dirichlet Allocation model: batch variational Bayesian inference, online variational Bayesian inference and inference using collapsed Gibbs sampling. We experimentally compare their time complexity and performance. We find that the online variational Bayesian inference converges faster than the other two inference techniques, wit...

متن کامل

A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been found lacking. In this paper we propose the collapsed variational Bayesian inference algorithm for ...

متن کامل

Algorithms of the LDA model [REPORT]

We review three algorithms for Latent Dirichlet Allocation (LDA). Two of them are variational inference algorithms: Variational Bayesian inference and Online Variational Bayesian inference and one is Markov Chain Monte Carlo (MCMC) algorithm – Collapsed Gibbs sampling. We compare their time complexity and performance. We find that online variational Bayesian inference is the fastest algorithm a...

متن کامل

Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units

The recent emergence of Graphics Processing Units (GPUs) as general-purpose parallel computing devices provides us with new opportunities to develop scalable learning methods for massive data. In this work, we consider the problem of parallelizing two inference methods on GPUs for latent Dirichlet Allocation (LDA) models, collapsed Gibbs sampling (CGS) and collapsed variational Bayesian (CVB). ...

متن کامل

Rethinking Collapsed Variational Bayes Inference for LDA

We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using the αdivergence. We show that the CVB0 inference is composed of two different divergence projections: α = 1 and −1. This interpretation will help she...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009